Задачи для тренировки:

1) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = 1$$
 при $n = 1$
 $F(n) = 2 \cdot F(n-1) + n + 3$, если $n > 1$

Чему равно значение функции F(19)?

2) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = 3$$
 при $n = 1$
 $F(n) = 2 \cdot F(n-1) - n + 1$, если $n > 1$

Чему равно значение функции F(21)?

3) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = 2$$
 при $n = 1$
 $F(n) = F(n-1) + 5n^2$, если $n > 1$

Чему равно значение функции F(39)?

4) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = 2$$
 при $n \le 1$
 $F(n) = F(n-1) + F(n-2) + 2n + 4$, если $n > 1$

Чему равно значение функции F(25)?

5) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = 3$$
 при $n \le 1$
 $F(n) = F(n-1) + 2 \cdot F(n-2) - 5$, если $n > 1$

Чему равно значение функции F(22)?

6) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = 2$$
 при $n \le 1$
 $F(n) = F(n-1) + F(n-2) + 4n$, если $n > 1$

Чему равно значение функции F(24)?

7) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n$$
 при $n > 15$
 $F(n) = 2 \cdot F(n+1) + 5n + 2$, если $n \le 15$

Чему равно значение функции F(2)?

8) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n$$
 при $n > 18$
 $F(n) = 3 \cdot F(n+1) + n + 8$, если $n \le 18$

Чему равно значение функции F(9)?

9) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n - 3$$
 при $n > 16$
 $F(n) = 2 \cdot F(n+1) + 2n + 3$, если $n \le 16$

Чему равно значение функции F(2)?

10) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = 2n - 5$$
 при $n > 12$
 $F(n) = 2 \cdot F(n+2) + n - 4$, если $n \le 12$

Чему равно значение функции F(1)?

11) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = 1$$
 при $n = 1$
 $F(n) = 2 \cdot F(n-1)$, если $n > 1$ и чётно,
 $F(n) = 5n + F(n-2)$, если $n > 1$ и нечётно.

Чему равно значение функции F(64)?

12) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n$$
 при $n < 1$

$$F(n) = n + 3 \cdot F(n-3)$$
, если $n \ge 1$ и чётно,

$$F(n) = 5n + 2 \cdot F(n-5)$$
, если $n \ge 1$ и нечётно.

Чему равно значение функции F(30)?

13) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = 2 \cdot n$$
 при $n < 3$

$$F(n) = 3n + 5 + F(n-2)$$
, если $n \ge 3$ и чётно,

$$F(n) = n + 2 \cdot F(n-6)$$
, если $n \ge 3$ и нечётно.

Чему равно значение функции F(61)?

14) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = -n$$
 при $n < 0$

$$F(n) = 2n + 1 + F(n-3)$$
, если $n \ge 0$ и чётно,

$$F(n) = 4n + 2 \cdot F(n-4)$$
, если $n \ge 0$ и нечётно.

Чему равно значение функции F(33)?

15) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = 5$$
— n при $n < 5$

$$F(n) = 4 \cdot (n-5) \cdot F(n-5)$$
, если $n \ge 5$ и делится на 3,

$$F(n) = 3n + 2 \cdot F(n-1) + F(n-2)$$
, если $n \ge 5$ и не делится на 3.

Чему равно значение функции F(20)?

16) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = 1 + 2n$$
 при $n < 5$

$$F(n) = 2 \cdot (n+1) \cdot F(n-2)$$
, если $n \ge 5$ и делится на 3,

$$F(n) = 2 \cdot n + 1 + F(n-1) + 2 \cdot F(n-2)$$
, если $n \ge 5$ и не делится на 3.

Чему равно значение функции F(15)?

17) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n + 3$$
 при $n < 3$

$$F(n) = (n+2) \cdot F(n-4)$$
, если $n \ge 3$ и делится на 3,

$$F(n) = n + F(n-1) + 2 \cdot F(n-2)$$
, если $n \ge 3$ и не делится на 3.

Чему равно значение функции F(20)?

18) Алгоритм вычисления функций F(n) и G(n) задан следующими соотношениями:

$$F(1) = G(1) = 1$$

$$F(n) = 2 \cdot F(n-1) + G(n-1) - 2$$
, если $n > 1$

$$G(n) = F(n-1) + 2 \cdot G(n-1)$$
, если $n > 1$

Чему равно значение F(14) + G(14)?

19) Алгоритм вычисления функций F(n) и G(n) задан следующими соотношениями:

$$F(1) = G(1) = 1$$

$$F(n) = 2 \cdot F(n-1) + G(n-1) - 2n$$
, если $n > 1$

$$G(n) = F(n-1) + 2 \cdot G(n-1) + n$$
, если $n > 1$

Чему равно значение F(14) + G(14)?

20) Алгоритм вычисления функций F(n) и G(n) задан следующими соотношениями:

$$F(1) = G(1) = 1$$

$$F(n) = 3 \cdot F(n-1) + G(n-1) - n + 5$$
, если $n > 1$

$$G(n) = F(n-1) + 3 \cdot G(n-1) - 3 \cdot n$$
, если $n > 1$

Чему равно значение F(14) + G(14)?

21) Определите, сколько символов * выведет эта процедура при вызове F(28):

Python	Паскаль	C++
def F(n):	<pre>procedure F(n: integer);</pre>	void F(int n)
print('*')	begin	{
if n >= 1:	write('*');	cout << '*';

22) Определите, сколько символов * выведет эта процедура при вызове F(35):

1 11 /		\ /
Python	Паскаль	C++
def F(n):	<pre>procedure F(n: integer);</pre>	<pre>void F(int n)</pre>
print('*')	begin	{
if n >= 1:	write('*');	cout << '*';
print('*')	if n >= 1 then begin	if(n >= 1) {
F(n-1)	write('*');	cout << '*';
F(n-2)	F(n-1);	F(n-1);
print('*')	F(n-2);	F(n-2);
	write('*');	cout << '*';
	end;	}
	end;	}

23) Определите, сколько символов * выведет эта процедура при вызове F(40):

		• •
Python	Паскаль	C++
def F(n):	<pre>procedure F(n: integer);</pre>	void F(int n)
print('*')	begin	{
if n >= 1:	write('*');	cout << '*';
print('*')	if n >= 1 then begin	if(n >= 1) {
F(n-1)	write('*');	cout << '*';
F(n-3)	F(n-1);	F(n-1);
print('*')	F(n-3);	F(n-3);
	write('*');	cout << '*';
	end;	}
	end;	}

24) Определите, сколько символов * выведет эта процедура при вызове F(280):

Python	Паскаль	C++
def F(n):	<pre>procedure F(n: integer);</pre>	<pre>void F(int n)</pre>
print('*')	begin	{
if n >= 1:	write('*');	cout << '*';
<pre>print('*')</pre>	if n >= 1 then begin	if(n >= 1) {
F(n-1)	write('*');	cout << '*';
F(n//3)	F(n-1);	F(n-1);
<pre>print('*')</pre>	F(n div 3);	F(n/3);
	write('*');	cout << '*';
	end;	}
	end;	}

25) Определите, сколько символов * выведет эта процедура при вызове F(140):

Python	Паскаль	C++
def F(n):	<pre>procedure F(n: integer);</pre>	<pre>void F(int n)</pre>
print('*')	begin	{
if n >= 1:	write('*');	cout << '*';
print('*')	if n >= 1 then begin	if(n >= 1) {
F(n-1)	write('*');	cout << '*';
F(n//2)	F(n-1);	F(n-1);

F(n div 2);	F(n/2);	
end;	}	ì
end;	}	ì

26) Определите наименьшее значение n, при котором сумма чисел, которые будут выведены при вызове F(n), будет больше 1000000. Запишите в ответе сначала найденное значение n, а затем через пробел — соответствующую сумму выведенных чисел.

```
Python
                           Паскаль
                                                        C++
def F(n):
                                            void F( int n )
                  procedure F
  print(n+1)
                       ( n: integer );
  if n > 1:
                                               cout << n+1 << endl;</pre>
                  begin
    print(n+5)
                    writeln(n+1);
                                               if( n > 1 ) {
    F(n-1)
                     if n > 1 then begin
                                                 cout << n+5 << endl;</pre>
    F(n-2)
                       writeln(n+5);
                                                 F(n-1);
                                                 F(n-2);
                       F(n-1);
                       F(n-2);
                     end;
                                             }
                  end;
```

27) Определите наименьшее значение n, при котором сумма чисел, которые будут выведены при вызове F(n), будет больше 1000000. Запишите в ответе сначала найденное значение n, а затем через пробел — соответствующую сумму выведенных чисел.

, , , , , , , , , , , , , , , , , , , ,	
Паскаль	C++
procedure F	void F(int n)
(n: integer);	{
begin	cout << n+1 << endl;
writeln(n+1);	if(n > 1) {
if n > 1 then begin	cout << 2*n << endl;
writeln(2*n);	F(n-1);
F(n-1);	F(n-3);
F(n-3);	}
end;	}
end;	
	<pre>procedure F (n: integer); begin writeln(n+1); if n > 1 then begin writeln(2*n); F(n-1); F(n-3); end;</pre>

28) Определите наименьшее значение n, при котором сумма чисел, которые будут выведены при вызове F(n), будет больше 5000000. Запишите в ответе сначала найденное значение n, а затем через пробел — соответствующую сумму выведенных чисел.

Python	Паскаль	C++
def F(n):	procedure F	<pre>void F(int n)</pre>
print(2*n+1)	(n: integer);	{
if n > 1:	begin	cout << 2*n+1 << endl;
print(3*n-8)	writeln(2*n+1);	if(n > 1) {
F(n-1)	if n > 1 then begin	cout << 3*n-8
F(n-4)	writeln(3*n-8);	<< endl;
	F(n-1);	F(n-1);
	F(n-4);	F(n-4);
	end;	}
	end;	}

29) Определите наименьшее значение n, при котором сумма чисел, которые будут выведены при вызове F(n), будет больше 3200000. Запишите в ответе сначала найденное значение n, а затем через пробел — соответствующую сумму выведенных чисел.

Python Паскаль	C++
----------------	-----

```
void F( int n )
def F(n):
                   procedure F
  print(n-5)
                        ( n: integer );
  if n > 1:
                                               cout << n-5 << endl;</pre>
    print(n+8)
                     writeln(n-5);
                                               if(n > 1) {
    F(n-2)
                     if n > 1 then begin
                                                 cout << n+8 << endl;</pre>
    F(n-3)
                        writeln(n+8);
                                                 F(n-2);
                                                 F(n-3);
                        F(n-2);
                        F(n-3);
                     end;
                                             }
                   end;
```

30) Определите наименьшее значение n, при котором сумма чисел, которые будут выведены при вызове F(n), будет больше 3200000. Запишите в ответе сначала найденное значение n, а затем через пробел – соответствующую сумму выведенных чисел.

Python	Паскаль	C++
def F(n):	procedure F	void F(int n)
print(n*n)	(n: integer);	{
if n > 1:	begin	<pre>cout << n*n << endl;</pre>
print(2*n+1)	<pre>writeln(n*n);</pre>	if(n > 1) {
F(n-2)	if n > 1 then begin	cout << 2*n+1 << endl;
F(n//3)	writeln(2*n+1);	F(n-2);
	F(n-2);	F(n/3);
	F(n div 3);	}
	end;	}
	end;	

31) (**Д.Ф. Муфаззалов**) Определите наименьшее значение n, при котором значение F(n), будет больше числа 320. Запишите в ответе сначала найденное значение n, а затем через пробел – соответствующее значение F(n).

Python	Паскаль	C++
def F(n):	function F	int F(int n)
if n>0:	<pre>(n: integer): integer;</pre>	{
return n%10*F(n//10)	begin	if(n)
else: return 1	if n > 0 then	return
	F:= n mod 10*	n%10*F(n/10);
	F(n div 10)	else return 1;
	else	}
	F:= 1;	
	end;	

32) (**Д.Ф. Муфаззалов**) Определите наибольшее трехзначное значение n, при котором значение F(n), будет больше числа 7. Запишите в ответе сначала найденное значение n, а затем через пробел – соответствующее значение F(n).

Python	Паскаль	C++
def F(n):	function F(n:	int F(int n)
if n<10:	<pre>integer): integer;</pre>	{
return n	<pre>var m,d: byte;</pre>	if(n < 10)
else:	begin	return n;
m=F(n//10)	if n < 10 then F:=n	else {
d=m%10;	else begin	int $m = F(n/10)$,

33) (**Д.Ф. Муфаззалов**) Определите наименьшее значение n такое, что последнее выведенное число при вызове F(n) будет больше числа 32. Запишите в ответе сначала найденное значение n, а затем через пробел — соответствующее значение F(n).

Python	Паскаль	C++
def F(n):	function F(n: integer):	int F(int n)
print(n)	integer;	{
if n>0:	<pre>var d:integer;</pre>	cout << n << endl;
d=n%10+F(n//10)	begin	if (n) {
print(d)	<pre>writeln(N);</pre>	int d = n % 10 +
return d	if n > 0 then begin	F(n/10);
else: return 0	d := n mod 10+	cout << d << endl;
	F(n div 10);	return d;
	<pre>writeln(d);</pre>	}
	F := d	else return 0;
	end	}
	else F:= 0;	
	end;	

34) (**Д.Ф. Муфаззалов**) Определите наименьшее число n такое, что при вызове F(n) второе выведенное число будет больше числа 51. Запишите в ответе сначала найденное значение n, а затем через пробел — соответствующее значение F(n).

Python	Паскаль	C++
def F(n):	function f(n: integer):	int F(int n)
<pre>print(n)</pre>	integer;	{
if n > 0:	<pre>var d:integer;</pre>	<pre>cout << n << endl;</pre>
d = (n%10 +	begin	if(n) {
F(n//10))	<pre>writeln(N);</pre>	int d = n%10 +
print(d)	if $n > 0$ then begin	F(n/10);
return d	d := n mod 10 +	<pre>cout << d << endl;</pre>
else:	F(n div 10);	return d;
return 0	<pre>writeln(d);</pre>	}
	F := d	else
	end	return 0;
	else F:= 0;	}
	end;	

35) **(Д.Ф. Муфаззалов, г. Уфа)** Определите наименьшее значение суммы n+m такое, что значение F(n,m) больше числа 15 и выполняется условие $n \neq m$, $n \ u \ m$ — натуральные числа. Запишите в ответе сначала значения $n \ u \ m$, при которых указанная сумма достигается, в порядке неубывания, а затем — соответствующее значение F(n,m). Числа в ответе разделяйте пробелом.

Python	Паскаль	C++
<pre>def F(n,m):</pre>	function F(n,m:	int F(int n, int m)
if n <m:< td=""><td>integer): integer;</td><td>{</td></m:<>	integer): integer;	{

```
if(n > m)
n,m = m,n
                     begin
if n != m:
                      if n > m then
                                                     return F(n-m,m);
                       F := F(n-m,m)
  return F(n-m,m)
                                                   else
else:
                      else
                                                     if(n < m)
                       if n < m then
 return n
                                                       return F(m-n,n);
                         F := F(n,m-n)
                                                     else
                       else
                                                       return n;
                         F := n;
                                                  }
                     end;
```

36) **(Д.Ф. Муфаззалов, г. Уфа)** Определите количество различных значений n таких, что n и m — натуральные числа, находящиеся в диапазоне [100; 1000], а значение F(n, m) равно числу 30.

```
def F(n,m):
                      function F(n,m:
                                                  int F(int n, int m)
if m == 0:
                         integer): integer;
  return n
                     begin
                                                  if(m == 0)
                       if m = 0 then
else:
                                                    return n;
                         F := n
  return F(m,n%m)
                                                  else
                       else
                                                     return F(m, n%m);
                         F := F(m, n \mod m)
                                                  }
                      end;
```

37) **(Д.Ф. Муфаззалов, г. Уфа)** Определите количество различных натуральных значений n таких, что значение F(n, 2) находится в диапазоне [100; 1000].

```
def F(n,m):
                      function F(n,m:
                                              int F(int n, int m)
if m == 0:
                      integer): integer;
   d = 1
                                              if(m == 0)
                      begin
                       if m = 0 then
                                                 return 1;
 else:
   d = n*F(n, m-1)
                         F := 1
                                              else
 return d
                                                 return n*F(n,m-1);
                         F:= n*F(n,m-1)
                                              }
                      end;
```

38) **(Д.Ф. Муфаззалов, г. Уфа)** Определите количество различных значений n таких, что n и m – натуральные числа, а значение F(n, m) равно числу 30.

```
def F(n,m):
                      function F(n,m:
                                              int F(int n, int m)
 if m == 0:
                      integer): integer;
  d = 0
                      begin
                                              if(m == 0)
else:
                       if m == 0 then
                                                return 0;
                         F := 0
  d = n+F(n, m-1)
                                              else
return d
                       else
                                                return n+F(n,m-1);
                         F:=n+F(n,m-1)
                                              }
                      end;
```

39) Алгоритм вычисления функций F(n) и G(n) задан следующими соотношениями:

```
F(n)=G(n)=1 при n=1 F(n)=F(n-1)-2\cdot G(n-1), при n>1 G(n)=F(n-1)+2\cdot G(n-1), при n>1
```

Чему равно значение функции G(21)?

40) Алгоритм вычисления функций F(n) и G(n) задан следующими соотношениями:

```
F(n)=G(n)=1 при n=1 F(n)=F(n-1)-n\cdot G(n-1), при n>1 G(n)=F(n-1)+2\cdot G(n-1), при n>1
```

Чему равно значение функции G(18)?

41) Алгоритм вычисления функций F(n) и G(n) задан следующими соотношениями:

$$F(n) = G(n) = 1$$
 при $n = 1$
 $F(n) = F(n-1) - 2 \cdot G(n-1)$, при $n > 1$
 $G(n) = F(n-1) + G(n-1) + n$, при $n > 1$

Чему равна сумма цифр значения функции G(36)?

42) Алгоритм вычисления функций F(n) и G(n) задан следующими соотношениями:

$$F(n) = G(n) = 1$$
 при $n = 1$
 $F(n) = F(n-1) + 3 \cdot G(n-1)$, при $n > 1$
 $G(n) = F(n-1) - 2 \cdot G(n-1)$, при $n > 1$

Чему равна сумма цифр значения функции F(18)?

43) (**К. Амеличев**) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n$$
 при $n \le 3$; $F(n) = n // 4 + F(n-3)$ при $3 < n \le 32$; $F(n) = 2 \cdot F(n-5)$ при $n > 32$

Здесь // обозначает деление нацело. В качестве ответа на задание выведите значение F(100).

44) (**К. Амеличев**) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n \ npu \ n \le 3;$$

 $F(n) = n * n * n + F(n-1),$ если $n > 3$ и дает остаток 0 при делении на 3
 $F(n) = 4 + F(n // 3),$ если $n > 3$ и дает остаток 1 при делении на 3
 $F(n) = n * n + F(n-2),$ если $n > 3$ и дает остаток 2 при делении на 3

Здесь // обозначает деление нацело. В качестве ответа на задание выведите значение F(100).

45) (**К. Амеличев**) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n$$
 при $n \le 10$; $F(n) = n // 4 + F(n-10)$ при $10 < n \le 36$; $F(n) = 2 \cdot F(n-5)$ при $n > 36$

Здесь // обозначает деление нацело. В качестве ответа на задание выведите значение F(100).

46) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n$$
 при $n \le 3$; $F(n) = 2 \cdot n \cdot n + F(n-1)$ при чётных $n > 3$; $F(n) = n \cdot n \cdot n + n + F(n-1)$ при нечётных $n > 3$;

Определите количество натуральных значений n, при которых F(n) меньше, чем 10^7 .

47) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n$$
 при $n \le 3$; $F(n) = F(n-1) + 2 \cdot F(n/2)$ при чётных $n > 3$; $F(n) = F(n-1) + F(n-3)$ при нечётных $n > 3$;

Определите количество натуральных значений n, при которых F(n) меньше, чем 10^8 .

48) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n)=n$$
 при $n \le 3$;
$$F(n)=n \ + F(n-1)$$
 при чётных $n > 3$;
$$F(n)=n \cdot n \ + F(n-2)$$
 при нечётных $n > 3$;

Определите количество натуральных значений n, при которых F(n) меньше, чем 10^8 .

49) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n)=n$$
 при $n \le 3$; $F(n)=2\cdot n \ + F(n-1)$ при чётных $n>3$; $F(n)=n\cdot n \ + F(n-2)$ при нечётных $n>3$;

Определите количество натуральных значений n из отрезка [1; 100], при которых значение F(n) кратно 3.

50) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n$$
 при $n \le 3$;

$$F(n) = n + 3 + F(n-1)$$
 при чётных $n > 3$;

$$F(n) = n \cdot n + F(n-2)$$
 при нечётных $n > 3$;

Определите количество натуральных значений n из отрезка [1; 1000], при которых значение F(n) кратно 7.

51) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = 1$$
 при $n \le 1$;

$$F(n) = n \cdot F(n-1)$$
 при чётных $n > 1$;

$$F(n) = n + F(n-2)$$
 при нечётных $n > 1$;

Определите значение F(84).

52) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = 1$$
 при $n \le 1$;

$$F(n) = n + F(n-1)$$
 при чётных $n > 1$;

$$F(n) = n \cdot n + F(n-2)$$
 при нечётных $n > 1$;

Определите значение F(80).

53) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n \cdot n - 5$$
 при $n > 15$

$$F(n) = n \cdot F(n+2) + n + F(n+3)$$
, если $n \le 15$

Чему равна сумма цифр значения функции F(1)?

54) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = 2 \cdot n \cdot n \cdot n + n \cdot n$$
 при $n > 25$

$$F(n) = F(n+2) + 2 \cdot F(n+3)$$
, если $n \le 25$

Чему равна сумма цифр значения функции F(2)?

55) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = 2 \cdot n \cdot n \cdot n + 1$$
 при $n > 25$

$$F(n) = F(n+2) + 2 \cdot F(n+3)$$
, если $n \le 25$

Определите количество натуральных значений n из отрезка [1; 1000], при которых значение F(n) кратно 11.

56) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n \cdot n \cdot n + n$$
 при $n > 20$

$$F(n) = 3 \cdot F(n+1) + F(n+3)$$
, при чётных $n \le 20$

$$F(n) = F(n+2) + 2 \cdot F(n+3)$$
, при нечётных $n \le 20$

Определите количество натуральных значений n из отрезка [1; 1000], при которых значение F(n) не содержит цифру 1.

57) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n \cdot n + 2 \cdot n + 1$$
, при $n > 25$

$$F(n) = 2 \cdot F(n+1) + F(n+3)$$
, при чётных $n \le 25$

$$F(n) = F(n+2) + 3 \cdot F(n+5)$$
, при нечётных $n \le 25$

Определите количество натуральных значений n из отрезка [1; 1000], при которых значение F(n) не содержит цифру 0.

58) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n \cdot n + 3 \cdot n + 5$$
, при $n > 30$

$$F(n) = 2 \cdot F(n+1) + F(n+4)$$
, при чётных $n \le 30$

$$F(n) = F(n+2) + 3 \cdot F(n+5)$$
, при нечётных $n \le 30$

Определите количество натуральных значений n из отрезка [1; 1000], при которых значение F(n) содержит не менее двух значащих цифр 0 (в любых разрядах).

59) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n \cdot n + 5 \cdot n + 4$$
, при $n > 30$

$$F(n) = F(n+1) + 3 \cdot F(n+4)$$
, при чётных $n \le 30$

$$F(n) = 2 \cdot F(n+2) + F(n+5)$$
, при нечётных $n \le 30$

Определите количество натуральных значений n из отрезка [1; 1000], для которых сумма цифр значения F(n) равна 27.

60) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n \cdot n + 4 \cdot n + 3$$
, при $n > 25$

$$F(n) = F(n+1) + 2 \cdot F(n+4)$$
, при $n \le 25$, кратных 3

$$F(n) = F(n+2) + 3 \cdot F(n+5)$$
, при $n \le 25$, не кратных 3

Определите количество натуральных значений n из отрезка [1; 1000], для которых сумма цифр значения F(n) равна 24.

61) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n \cdot n + 3 \cdot n + 9$$
, при $n \le 15$

$$F(n) = F(n-1) + n - 2$$
, при $n > 15$, кратных 3

$$F(n) = F(n-2) + n + 2$$
, при $n > 15$, не кратных 3

Определите количество натуральных значений n из отрезка [1; 1000], для которых все цифры значения F(n) чётные.

62) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = 2 \cdot n \cdot n + 4 \cdot n + 3$$
, при $n \le 15$

$$F(n) = F(n-1) + n \cdot n + 3$$
, при $n > 15$, кратных 3

$$F(n) = F(n-2) + n - 6$$
, при $n > 15$, не кратных 3

Определите количество натуральных значений n из отрезка [1; 1000], для которых все цифры значения F(n) нечётные.

63) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n \cdot n \cdot n + n \cdot n + 1$$
, при $n \le 13$

$$F(n) = F(n-1) + 2 \cdot n \cdot n - 3$$
, при $n > 13$, кратных 3

$$F(n) = F(n-2) + 3 \cdot n + 6$$
, при $n > 13$, не кратных 3

Определите количество натуральных значений n из отрезка [1; 1000], для которых все цифры значения F(n) нечётные.

64) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n + 3$$
, при $n \le 18$

$$F(n) = (n // 3) \cdot F(n // 3) + n - 12$$
, при $n > 18$, кратных 3

$$F(n) = F(n-1) + n \cdot n + 5$$
, при $n > 18$, не кратных 3

Здесь «//» обозначает деление нацело. Определите количество натуральных значений n из отрезка [1; 800], для которых все цифры значения F(n) чётные.

65) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n + 15$$
, при $n \le 5$

$$F(n) = F(n // 2) + n \cdot n \cdot n - 1$$
, при чётных $n > 5$

$$F(n) = F(n-1) + 2 \cdot n \cdot n + 1$$
, при нечётных $n > 5$

Здесь «//» обозначает деление нацело. Определите количество натуральных значений n из отрезка [1; 1000], для которых значения F(n) содержит не менее двух цифр 8.

66) Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = n \cdot n + 11$$
, при $n \le 15$

$$F(n) = F(n / / 2) + n \cdot n \cdot n - 5 \cdot n$$
, при чётных $n > 15$

$$F(n) = F(n-1) + 2 \cdot n + 3$$
, при нечётных $n > 15$

Здесь «//» обозначает деление нацело. Определите количество натуральных значений n из отрезка [1; 1000], для которых значения F(n) содержит не менее трёх цифр 6.

67) (**Е. Джобс**) Алгоритм вычисления функции F(n), где n — натуральное число, задан следующими соотношениями:

$$F(n) = n + 1$$
 при $n < 3$,

$$F(n) = n + 2*F(n+2)$$
, когда $n \ge 3$ и четно,

$$F(n) = F(n-2) + n - 2$$
, когда $n \ge 3$ и нечетно.

Сколько существует чисел n, для которых значение F(n) определено и будет трехзначным?

68) Алгоритм вычисления функций F(n), где n — натуральное число, задан следующими соотношениями:

$$F(n) = n + 1$$
 при $n < 3$,

$$F(n) = F(n-2) + n - 2$$
, когда $n \ge 3$ и четно,

$$F(n) = F(n+2) + n + 2$$
, когда $n \ge 3$ и нечетно.

Сколько существует чисел n, для которых значение F(n) определено и будет пятизначным?

69) (**Е. Джобс**) Алгоритм вычисления функции F(n), где n – целое число, задан следующими соотношениями:

$$F(n) = n - 1$$
 при $n < 4$,

$$F(n) = n + 2 \cdot F(n-1)$$
, когда $n \ge 4$ и кратно 3,

$$F(n) = F(n-2) + F(n-3)$$
, когда $n \ge 4$ и не кратно 3.

Чему равна сумма цифр значения F(25)?

70) (**Е. Джобс**) Алгоритм вычисления функции F(n), где n – целое число, задан следующими соотношениями:

$$F(n) = 1$$
 при $n = 0$,

$$F(n) = 2 \cdot F(1-n) + 3 \cdot F(n-1) + 2$$
, когда $n > 0$,

$$F(n) = -F(-n)$$
, когда $n < 0$.

Чему равна сумма цифр значения F(50)?

71) (**Е. Джобс**) Алгоритм вычисления функции F(n), где n – целое число, задан следующими соотношениями:

$$F(n) = 5$$
 при $n = 0$,

$$F(n) = 3 \cdot F(n-4)$$
, когда $n > 0$,

$$F(n) = F(n+3)$$
, когда $n < 0$.

Чему равно значение F(43)?

72) **(Е. Джобс)** Алгоритм вычисления функции F(n), где n – целое число, задан следующими соотношениями:

$$F(n) = F(n+2) + 2 \cdot F(3 \cdot n)$$
 при $n \le 70$,

$$F(n) = n - 50$$
, когда $n > 70$.

Чему равно значение F(40)?

73) (**Е. Джобс**) Алгоритмы вычисления функций F(n) и G(n) где n – целое число, заданы следующими соотношениями (// обозначает деление нацело):

$$F(n) = n$$
, при $n < 50$,

$$F(n) = 2 \cdot G(50 - n // 2)$$
, при $n > 49$,

$$G(n) = 10$$
, при $n > 40$,

$$G(n) = 30 + F(n + 600 // n)$$
, при $n < 41$

Чему равно значение F(80)?

74) (**Е. Джобс**) Алгоритм вычисления функции F(n), где n – целое число, задан следующими соотношениями:

$$F(n) = 1$$
, при $n < -100000$,

$$F(n) = F(n-1) + 3 \cdot F(n-3) + 2$$
, при $n > 10$,

$$F(n) = -F(n-1)$$
 для остальных случаев.

Чему равно значение F(20)?

75) Алгоритм вычисления функции F(n), где n – целое число, задан следующими соотношениями:

$$F(n) = n$$
, при $n \le 1$,

$$F(n) = 1 + F(n/2)$$
, когда $n > 1$ и чётное,

$$F(n) = 1 + F(n+2)$$
, когда $n > 1$ и нечётное.

Назовите минимальное значение n, для которого F(n) = 16.

76) Алгоритм вычисления функции F(n), где n – целое число, задан следующими соотношениями:

$$F(n) = 1$$
, при $n \le 1$,

$$F(n) = 3 + F(n/2 - 1)$$
, когда $n > 1$ и чётное,

$$F(n) = n + F(n + 2)$$
, когда $n > 1$ и нечётное.

Назовите минимальное значение n, для которого F(n) = 19.

77) Алгоритм вычисления функции F(n), где n – целое число, задан следующими соотношениями:

$$F(n) = n$$
, при $n \le 1$,

$$F(n) = n + F(n/3)$$
, когда $n > 1$ и делится на 3,

$$F(n) = n + F(n + 3)$$
, когда $n > 1$ и не делится на 3.

Назовите минимальное значение n, для которого F(n) определено и больше 100.

78) Алгоритм вычисления функции F(n), где n – целое число, задан следующими соотношениями:

$$F(n) = n$$
, при $n \le 1$,

$$F(n) = n + F(n/3 - 1)$$
, когда $n > 1$ и делится на 3,

$$F(n) = n + F(n + 3)$$
, когда $n > 1$ и не делится на 3.

Назовите минимальное значение n, для которого F(n) определено и больше 1000.

79) Алгоритм вычисления функции F(n), где n – целое число, задан следующими соотношениями:

$$F(n) = n$$
, при $n \le 5$,

$$F(n) = n + F(n/3 + 1)$$
, когда $n > 5$ и делится на 3,

$$F(n) = n + F(n + 3)$$
, когда $n > 5$ и не делится на 3.

Назовите минимальное значение n, для которого F(n) определено и больше 1000.

80) Алгоритм вычисления функции F(n), где n – целое число, задан следующими соотношениями:

$$F(n) = n$$
, при $n \le 5$,

$$F(n) = n + F(n/3 + 2)$$
, когда $n > 5$ и делится на 3,

$$F(n) = n + F(n + 3)$$
, когда $n > 5$ и не делится на 3.

Назовите минимальное значение n, для которого F(n) определено и больше 1000.

81) Алгоритм вычисления функции F(n), где n – целое число, задан следующими соотношениями:

$$F(n) = n$$
, при $n \le 5$,

$$F(n) = n + F(n/5+1)$$
, когда $n > 5$ и делится на 5,

$$F(n) = n + F(n + 6)$$
, когда $n > 5$ и не делится на 5.

Назовите минимальное значение n, для которого F(n) определено и больше 1000.

82) Алгоритм вычисления функции F(n), где n – целое число, задан следующими соотношениями:

$$F(n) = n$$
, при $n \le 5$,

$$F(n) = n + F(n/2 - 1)$$
, когда $n > 5$ и делится на 4,

$$F(n) = n + F(n+2)$$
, когда $n > 5$ и не делится на 4.

Назовите максимальное значение n, для которого возможно вычислить F(n).

83) Алгоритм вычисления функции F(n), где n – целое число, задан следующими соотношениями:

$$F(n) = n$$
, при $n \le 5$,

$$F(n) = n + F(n/2 - 3)$$
, когда $n > 5$ и делится на 8,

$$F(n) = n + F(n + 4)$$
, когда $n > 5$ и не делится на 8 .

Назовите максимальное значение n, для которого возможно вычислить F(n).

84) (**А. Богданов**) Алгоритм вычисления функции F(n), где n – целое число, задан следующими соотношениями:

F(n) = n, при n < 2,

F(n) = F(n/2) + 1, когда $n \ge 2$ и чётное,

F(n) = F(3n + 1) + 1, когда $n \ge 2$ и нечётное.

Назовите количество значений n на отрезке [1;100], для которых F(n) определено и больше 100.

85) Алгоритм вычисления функции F(n), где n — натуральное число, задан следующими соотношениями:

$$F(1) = 1$$
,

F(n) = F(n/2) + 1, когда $n \ge 2$ и чётное,

F(n) = F(n-1) + n, когда $n \ge 2$ и нечётное.

Назовите количество значений n на отрезке [1;100000], для которых F(n) равно 16.

86) Алгоритм вычисления функции F(n), где n — натуральное число, задан следующими соотношениями:

$$F(n) = 1$$
, при $n < 2$,

F(n) = F(n/2) + 1, когда $n \ge 2$ и чётное,

F(n) = F(n-3) + 3, когда $n \ge 2$ и нечётное.

Назовите количество значений n на отрезке [1;100000], для которых F(n) равно 12.

87) Алгоритм вычисления функции F(n), где n — натуральное число, задан следующими соотношениями:

$$F(n) = 1$$
, при $n < 2$,

F(n) = F(n/3) + 1, когда $n \ge 2$ и делится на 3,

F(n) = F(n-2) + 5, когда $n \ge 2$ и не делится на 3.

Назовите количество значений n на отрезке [1;100000], для которых F(n) равно 55.

88) Алгоритм вычисления функции F(n), где n — натуральное число, задан следующими соотношениями:

$$F(n) = 1$$
, при $n < 2$,

F(n) = F(n/3) - 1, когда $n \ge 2$ и делится на 3,

F(n) = F(n-1) + 7, когда $n \ge 2$ и не делится на 3.

Назовите количество значений n на отрезке [1;100000], для которых F(n) равно 35.

89) Алгоритм вычисления функции F(n), где n — натуральное число, задан следующими соотношениями:

$$F(n) = 1$$
, при $n < 2$,

$$F(n) = F(n/3) - 1$$
, когда $n \ge 2$ и делится на 3,

$$F(n) = F(n-1) + 17$$
, когда $n \ge 2$ и не делится на 3.

Назовите количество значений n на отрезке [1;100000], для которых F(n) равно 43.

90) Алгоритм вычисления функции F(n), где n — натуральное число, задан следующими соотношениями:

$$F(1) = 1$$
,

F(n) = F(n/2) + 1, когда $n \ge 2$ и чётное,

F(n) = F(n-1) + n, когда $n \ge 2$ и нечётное.

Назовите минимальное значение n, для которого F(n) равно 19.

91) Алгоритм вычисления функции F(n), где n — натуральное число, задан следующими соотношениями:

$$F(n) = 1$$
, при $n < 2$,

$$F(n) = F(n/2) + 1$$
, когда $n \ge 2$ и чётное,

$$F(n) = F(n-3) + 3$$
, когда $n \ge 2$ и нечётное.

Назовите минимальное значение n, для которого F(n) равно 31.

92) Алгоритм вычисления функции F(n), где n — натуральное число, задан следующими соотношениями:

$$F(n) = 1$$
, при $n < 2$,

$$F(n) = F(n/3) + 1$$
, когда $n \ge 2$ и делится на 3,

$$F(n) = F(n-2) + 5$$
, когда $n \ge 2$ и не делится на 3.

Назовите минимальное значение n, для которого F(n) равно 73.

93) Алгоритм вычисления функции F(n), где n — натуральное число, задан следующими соотношениями:

$$F(n) = 1$$
, при $n < 2$,

$$F(n) = F(n/3) - 1$$
, когда $n \ge 2$ и делится на 3,

$$F(n) = F(n-1) + 7$$
, когда $n \ge 2$ и не делится на 3.

Назовите минимальное значение n, для которого F(n) равно 111.

94) Алгоритм вычисления функции F(n), где n — натуральное число, задан следующими соотношениями:

$$F(n) = 1$$
, при $n < 2$,

$$F(n) = F(n/3) - 1$$
, когда $n \ge 2$ и делится на 3,

$$F(n) = F(n-1) + 17$$
, когда $n \ge 2$ и не делится на 3.

Назовите минимальное значение n, для которого F(n) равно 110.

95) (**А. Богданов**) Алгоритмы вычисления функций F(n) и G(n) заданы следующими соотношениями (здесь // – операция деления нацело, % – остаток от деления):

$$F(n) = n$$
, при $n < 10$,

$$F(n) = F(G(n))$$
, при $n \ge 10$,

$$G(n) = n$$
, при $n < 10$,

$$G(n) = n \% 10 + G(n // 10)$$
, при $n \ge 10$.

Чему равно значение F(12345678987654321)?

96) (**А. Богданов**) Алгоритмы вычисления функций F(n) и G(n) заданы следующими соотношениями (здесь // — операция деления нацело, % — остаток от деления):

$$F(n) = n$$
, при $n < 10$,

$$F(n) = n \% 10 + F(n // 10)$$
, при $n \ge 10$.

$$G(n) = n$$
, при $n < 10$,

$$G(n) = G(F(n))$$
, при $n \ge 10$,

Чему равна сумма значений функции G(n) для всех двузначных n?

97) Алгоритм вычисления функции F(n), где n – целое неотрицательное число, задан следующими соотношениями:

$$F(0) = 0$$
,

$$F(n) = F(n/2)$$
, когда $n > 0$ и делится на 2,

$$F(n) = F(n-1) + 3$$
, когда $n > 0$ и не делится на 2.

Сколько существует значений n, принадлежащих отрезку [1; 1000], для которых F(n) равно 18?

98) Алгоритм вычисления функции F(n), где n – целое неотрицательное число, задан следующими соотношениями:

$$F(0)=0,$$

$$F(n) = F(n/2) + 3$$
, когда $n > 0$ и делится на 2,

$$F(n) = 2 \cdot F(n-1) + 1$$
, когда $n > 0$ и не делится на 2.

Сколько различных значений может принимать функция F(n) при n, принадлежащих отрезку [1; 1000]?

99) (**А. Богданов**) Алгоритм вычисления функции F(n), где n — целое неотрицательное число, задан следующими соотношениями:

$$F(0) = 0$$
,

$$F(n) = 1$$
, когда $0 < n < 3$,

$$F(n) = F(n-2) + F(n-1)$$
, когда $n \ge 3$.

Определите четыре последние цифры числа F(47).

100) (**Е. Джобс**) Алгоритм вычисления функции F(n), где n – целое неотрицательное число, задан следующими соотношениями:

$$F(n) = n + 3$$
, при $n \le 3$

$$F(n) = F(n-2) + n$$
, при $n > 3$ и четном значении $F(n-1)$,

$$F(n) = F(n-2) + 2 \cdot n$$
, при $n > 3$ и нечетном значении $F(n-1)$

Определите сумму значений, являющихся результатом вызова функции для значений n в диапазоне [40; 50].

101) (**Е. Джобс**) Алгоритм вычисления функции F(n), где n – целое неотрицательное число, задан следующими соотношениями:

$$F(0) = 1$$
, $F(1) = 3$

$$F(n) = F(n-1) - F(n-2) + 3n$$
, при $n > 1$

Чему равно значение функции F(40)? В ответе запишите только целое число.

102) (**Е. Джобс**) Алгоритм вычисления функции F(n), где n — целое неотрицательное число, задан следующими соотношениями:

$$F(0) = 1$$
, $F(1) = 3$

$$F(n) = F(n-1) - F(n-2) + 3n$$
, при $n > 1$ и n – четно

$$F(n) = F(n-2) - F(n-3) + 2n$$
, при $n > 1$ и n — нечетно

Чему равно значение функции F(40)? В ответе запишите только целое число.

103) (**П. Волгин**) Алгоритм вычисления функции F(n), где n – целое неотрицательное число, задан следующими соотношениями:

$$F(0) = 1$$

$$F(n) = F(n-1)$$
, при $0 < n \le 10$

$$F(n) = 2,2*F(n-3)$$
, при $10 < n < 100$

$$F(n) = 1,7*F(n-2)$$
, при $n \ge 100$

Чему равна целая часть значения функции F(22)?

104) (**П. Волгин**) Алгоритм вычисления функции F(n), где n – целое неотрицательное число, задан следующими соотношениями:

$$F(0) = 1$$

$$F(n) = F(n-1)$$
, при $0 < n \le 10$

$$F(n) = 2,2*F(n-3)$$
, при $10 < n < 100$

$$F(n) = 1,7*F(n-2)$$
, при $n \ge 100$

Чему равна сумма цифр целой части F(40)?

105) (**П. Волгин**) Алгоритм вычисления функции F(n), где n – целое неотрицательное число, задан следующими соотношениями:

$$F(0) = 2$$

$$F(n) = F(n-1)$$
, при $0 < n \le 15$

$$F(n) = 1.6*F(n-3)$$
, при $15 < n < 95$

$$F(n) = 3,3*F(n-2)$$
, при $n \ge 95$

Какая цифра встречается чаще всего в целой части значения функции F(33)?

106) (**П. Волгин**) Алгоритм вычисления функции F(n), где n – целое неотрицательное число, задан следующими соотношениями:

$$F(0) = 3$$

$$F(n) = F(n-1)$$
, при $0 < n \le 15$

$$F(n) = 2.5*F(n-3)$$
, при $15 < n < 95$

$$F(n) = 3,3*F(n-2)$$
, при $n \ge 95$

С какой цифры начинается целая часть значения функции F(70)?

107) (**П. Волгин**) Алгоритм вычисления функции F(n), где n — целое неотрицательное число, задан следующими соотношениями:

$$F(0) = 3$$

$$F(n) = F(n-1)$$
, при $0 < n \le 15$

$$F(n) = 2.5*F(n-3)$$
, при $15 < n < 100$

$$F(n) = 3,3*F(n-2)$$
, при $n \ge 100$

С какой цифры начинается дробная часть значения функции F(100)?

108) (**П. Волгин**) Алгоритм вычисления функции F(n), где n – целое неотрицательное число, задан следующими соотношениями:

$$F(0) = 1$$

$$F(n) = F(n-1) + F(n-2)$$
, при чётном $n > 0$

$$F(n) = 1,5*F(n-1)$$
, при нечётном $n > 0$

Сколько различных цифр встречается в целой части значения функции F(15)?